Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xxii</td>
</tr>
<tr>
<td>Preface to first edition</td>
<td>xxiii</td>
</tr>
<tr>
<td>Notation and abbreviations</td>
<td>xxvii</td>
</tr>
<tr>
<td>I Model structure, properties and methods</td>
<td>1</td>
</tr>
<tr>
<td>1 Preliminaries: mixtures and Markov chains</td>
<td>3</td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>3</td>
</tr>
<tr>
<td>1.2 Independent mixture models</td>
<td>6</td>
</tr>
<tr>
<td>1.2.1 Definition and properties</td>
<td>6</td>
</tr>
<tr>
<td>1.2.2 Parameter estimation</td>
<td>9</td>
</tr>
<tr>
<td>1.2.3 Unbounded likelihood in mixtures</td>
<td>11</td>
</tr>
<tr>
<td>1.2.4 Examples of fitted mixture models</td>
<td>12</td>
</tr>
<tr>
<td>1.3 Markov chains</td>
<td>14</td>
</tr>
<tr>
<td>1.3.1 Definitions and example</td>
<td>14</td>
</tr>
<tr>
<td>1.3.2 Stationary distributions</td>
<td>17</td>
</tr>
<tr>
<td>1.3.3 Autocorrelation function</td>
<td>18</td>
</tr>
<tr>
<td>1.3.4 Estimating transition probabilities</td>
<td>19</td>
</tr>
<tr>
<td>1.3.5 Higher-order Markov chains</td>
<td>20</td>
</tr>
<tr>
<td>Exercises</td>
<td>23</td>
</tr>
<tr>
<td>2 Hidden Markov models: definition and properties</td>
<td>29</td>
</tr>
<tr>
<td>2.1 A simple hidden Markov model</td>
<td>29</td>
</tr>
<tr>
<td>2.2 The basics</td>
<td>30</td>
</tr>
<tr>
<td>2.2.1 Definition and notation</td>
<td>30</td>
</tr>
<tr>
<td>2.2.2 Marginal distributions</td>
<td>32</td>
</tr>
<tr>
<td>2.2.3 Moments</td>
<td>33</td>
</tr>
<tr>
<td>2.3 The likelihood</td>
<td>34</td>
</tr>
<tr>
<td>2.3.1 The likelihood of a two-state Bernoulli–HMM</td>
<td>35</td>
</tr>
<tr>
<td>2.3.2 The likelihood in general</td>
<td>36</td>
</tr>
<tr>
<td>2.3.3 HMMs are not Markov processes</td>
<td>39</td>
</tr>
<tr>
<td>2.3.4 The likelihood when data are missing</td>
<td>40</td>
</tr>
</tbody>
</table>
2.3.5 The likelihood when observations are interval-censored 41
Exercises 41

3 Estimation by direct maximization of the likelihood 47
3.1 Introduction 47
3.2 Scaling the likelihood computation 48
3.3 Maximization of the likelihood subject to constraints 50
3.3.1 Reparametrization to avoid constraints 50
3.3.2 Embedding in a continuous-time Markov chain 52
3.4 Other problems 53
3.4.1 Multiple maxima in the likelihood 53
3.4.2 Starting values for the iterations 53
3.4.3 Unbounded likelihood 53
3.5 Example: earthquakes 54
3.6 Standard errors and confidence intervals 56
3.6.1 Standard errors via the Hessian 56
3.6.2 Bootstrap standard errors and confidence intervals 58
3.7 Example: the parametric bootstrap applied to the three-state model for the earthquakes data 59
Exercises 60

4 Estimation by the EM algorithm 65
4.1 Forward and backward probabilities 65
4.1.1 Forward probabilities 66
4.1.2 Backward probabilities 67
4.1.3 Properties of forward and backward probabilities 68
4.2 The EM algorithm 69
4.2.1 EM in general 70
4.2.2 EM for HMMs 70
4.2.3 M step for Poisson– and normal–HMMs 72
4.2.4 Starting from a specified state 73
4.2.5 EM for the case in which the Markov chain is stationary 73
4.3 Examples of EM applied to Poisson HMMs 74
4.3.1 Earthquakes 74
4.3.2 Foetal movement counts 76
4.4 Discussion 77
Exercises 78

5 Forecasting, decoding and state prediction 81
5.1 Introduction 81
CONTENTS

5.2 Conditional distributions xiii
5.3 Forecast distributions 82
5.4 Decoding 83
5.4.1 State probabilities and local decoding 85
5.4.2 Global decoding 86
5.5 State prediction 88
5.6 HMMs for classification 89
Exercises 90

6 Model selection and checking 97
6.1 Model selection by AIC and BIC 97
6.2 Model checking with pseudo-residuals 101
6.2.1 Introducing pseudo-residuals 101
6.2.2 Ordinary pseudo-residuals 105
6.2.3 Forecast pseudo-residuals 106
6.3 Examples 106
6.3.1 Ordinary pseudo-residuals for the earthquakes 106
6.3.2 Dependent ordinary pseudo-residuals 108
6.4 Discussion 109
Exercises 109

7 Bayesian inference for Poisson–hidden Markov models 111
7.1 Applying the Gibbs sampler to Poisson–HMMs 111
7.1.1 Introduction and outline 111
7.1.2 Generating sample paths of the Markov chain 113
7.1.3 Decomposing the observed counts into regime contributions 114
7.1.4 Updating the parameters 115
7.2 Bayesian estimation of the number of states 115
7.2.1 Use of the integrated likelihood 117
7.2.2 Model selection by parallel sampling 118
7.3 Example: earthquakes 119
7.4 Discussion 119
Exercises 120

8 R packages 123
8.1 The package depmixS4 123
8.1.1 Model formulation and estimation 123
8.1.2 Decoding 124
8.2 The package HiddenMarkov 124
8.2.1 Model formulation and estimation 124
8.2.2 Decoding 126
8.2.3 Residuals 126
8.3 The package smm 126
CONTENTS

8.3.1 Model formulation and estimation 126
8.3.2 Decoding 128
8.4 The package R2openBUGS 128
8.5 Discussion 129

II Extensions 131

9 HMMs with general state-dependent distribution 133
 9.1 Introduction 133
 9.2 General univariate state-dependent distribution 133
 9.2.1 HMMs for unbounded counts 133
 9.2.2 HMMs for binary data 134
 9.2.3 HMMs for bounded counts 134
 9.2.4 HMMs for continuous-valued series 135
 9.2.5 HMMs for proportions 135
 9.2.6 HMMs for circular-valued series 136
 9.3 Multinomial and categorical HMMs 136
 9.3.1 Multinomial–HMM 136
 9.3.2 HMMs for categorical data 137
 9.3.3 HMMs for compositional data 138
 9.4 General multivariate state-dependent distribution 138
 9.4.1 Longitudinal conditional independence 138
 9.4.2 Contemporaneous conditional independence 140
 9.4.3 Further remarks on multivariate HMMs 141

Exercises 142

10 Covariates and other extra dependencies 145
 10.1 Introduction 145
 10.2 HMMs with covariates 145
 10.2.1 Covariates in the state-dependent distributions 146
 10.2.2 Covariates in the transition probabilities 147
 10.3 HMMs based on a second-order Markov chain 148
 10.4 HMMs with other additional dependencies 150

Exercises 152

11 Continuous-valued state processes 155
 11.1 Introduction 155
 11.2 Models with continuous-valued state process 156
 11.2.1 Numerical integration of the likelihood 157
 11.2.2 Evaluation of the approximate likelihood via forward recursion 158
 11.2.3 Parameter estimation and related issues 160
 11.3 Fitting an SSM to the earthquake data 160
 11.4 Discussion 162
CONTENTS

12 Hidden semi-Markov models and their representation as HMMs
12.1 Introduction
12.2 Semi-Markov processes, hidden semi-Markov models and approximating HMMs
12.3 Examples of HSMMs represented as HMMs
12.3.1 A simple two-state Poisson–HSMM
12.3.2 Example of HSMM with three states
12.3.3 A two-state HSMM with general dwell-time distribution in one state
12.4 General HSMM
12.5 R code
12.6 Some examples of dwell-time distributions
12.6.1 Geometric distribution
12.6.2 Shifted Poisson distribution
12.6.3 Shifted negative binomial distribution
12.6.4 Shifted binomial distribution
12.6.5 A distribution with unstrucured start and geometric tail
12.7 Fitting HSMMs via the HMM representation
12.8 Example: earthquakes
12.9 Discussion
Exercises

13 HMMs for longitudinal data
13.1 Introduction
13.2 Models that assume some parameters to be constant across component series
13.3 Models with random effects
13.3.1 HMMs with continuous-valued random effects
13.3.2 HMMs with discrete-valued random effects
13.4 Discussion
Exercises

III Applications

14 Introduction to applications

15 Epileptic seizures
15.1 Introduction
15.2 Models fitted
15.3 Model checking by pseudo-residuals
Exercises
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Daily rainfall occurrence</td>
<td>207</td>
</tr>
<tr>
<td>16.1</td>
<td>Introduction</td>
<td>207</td>
</tr>
<tr>
<td>16.2</td>
<td>Models fitted</td>
<td>207</td>
</tr>
<tr>
<td>17</td>
<td>Eruptions of the Old Faithful geyser</td>
<td>213</td>
</tr>
<tr>
<td>17.1</td>
<td>Introduction</td>
<td>213</td>
</tr>
<tr>
<td>17.2</td>
<td>The data</td>
<td>213</td>
</tr>
<tr>
<td>17.3</td>
<td>The binary time series of short and long eruptions</td>
<td>214</td>
</tr>
<tr>
<td>17.3.1</td>
<td>Markov chain models</td>
<td>214</td>
</tr>
<tr>
<td>17.3.2</td>
<td>Hidden Markov models</td>
<td>216</td>
</tr>
<tr>
<td>17.3.3</td>
<td>Comparison of models</td>
<td>219</td>
</tr>
<tr>
<td>17.3.4</td>
<td>Forecast distributions</td>
<td>219</td>
</tr>
<tr>
<td>17.4</td>
<td>Univariate normal–HMMs for durations and waiting times</td>
<td>220</td>
</tr>
<tr>
<td>17.5</td>
<td>Bivariate normal–HMM for durations and waiting times</td>
<td>223</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>224</td>
</tr>
<tr>
<td>18</td>
<td>HMMs for animal movement</td>
<td>227</td>
</tr>
<tr>
<td>18.1</td>
<td>Introduction</td>
<td>227</td>
</tr>
<tr>
<td>18.2</td>
<td>Directional data</td>
<td>228</td>
</tr>
<tr>
<td>18.2.1</td>
<td>Directional means</td>
<td>228</td>
</tr>
<tr>
<td>18.2.2</td>
<td>The von Mises distribution</td>
<td>228</td>
</tr>
<tr>
<td>18.3</td>
<td>HMMs for movement data</td>
<td>229</td>
</tr>
<tr>
<td>18.3.1</td>
<td>Movement data</td>
<td>229</td>
</tr>
<tr>
<td>18.3.2</td>
<td>HMMs as multi-state random walks</td>
<td>230</td>
</tr>
<tr>
<td>18.4</td>
<td>A basic HMM for Drosophila movement</td>
<td>232</td>
</tr>
<tr>
<td>18.5</td>
<td>HMMs and HSMMs for bison movement</td>
<td>235</td>
</tr>
<tr>
<td>18.6</td>
<td>Mixed HMMs for woodpecker movement</td>
<td>238</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>242</td>
</tr>
<tr>
<td>19</td>
<td>Wind direction at Koeberg</td>
<td>245</td>
</tr>
<tr>
<td>19.1</td>
<td>Introduction</td>
<td>245</td>
</tr>
<tr>
<td>19.2</td>
<td>Wind direction classified into 16 categories</td>
<td>245</td>
</tr>
<tr>
<td>19.2.1</td>
<td>Three HMMs for hourly averages of wind direction</td>
<td>245</td>
</tr>
<tr>
<td>19.2.2</td>
<td>Model comparisons and other possible models</td>
<td>248</td>
</tr>
<tr>
<td>19.3</td>
<td>Wind direction as a circular variable</td>
<td>251</td>
</tr>
<tr>
<td>19.3.1</td>
<td>Daily at hour 24: von Mises–HMMs</td>
<td>251</td>
</tr>
<tr>
<td>19.3.2</td>
<td>Modelling hourly change of direction</td>
<td>253</td>
</tr>
<tr>
<td>19.3.3</td>
<td>Transition probabilities varying with lagged speed</td>
<td>253</td>
</tr>
<tr>
<td>19.3.4</td>
<td>Concentration parameter varying with lagged speed</td>
<td>254</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>257</td>
</tr>
</tbody>
</table>
CONTENTS

20 Models for financial series
20.1 Financial series I: A multivariate normal-HMM for returns on four shares
20.2 Financial series II: Discrete state-space stochastic volatility models
20.2.1 Stochastic volatility models without leverage
20.2.2 Application: FTSE 100 returns
20.2.3 Stochastic volatility models with leverage
20.2.4 Application: TOPIX returns
20.2.5 Non-standard stochastic volatility models
20.2.6 A model with a mixture AR(1) volatility process
20.2.7 Application: S&P 500 returns
Exercises

21 Births at Edendale Hospital
21.1 Introduction
21.2 Models for the proportion Caesarean
21.3 Models for the total number of deliveries
21.4 Conclusion

22 Homicides and suicides in Cape Town, 1986–1991
22.1 Introduction
22.2 Firearm homicides as a proportion of all homicides, suicides and legal intervention homicides
22.3 The number of firearm homicides
22.4 Firearm homicides as a proportion of all homicides, and firearm suicides as a proportion of all suicides
22.5 Proportion in each of the five categories

23 A model for animal behaviour which incorporates feedback
23.1 Introduction
23.2 The model
23.3 Likelihood evaluation
23.3.1 The likelihood as a multiple sum
23.3.2 Recursive evaluation
23.4 Parameter estimation by maximum likelihood
23.5 Model checking
23.6 Inferring the underlying state
23.7 Models for a heterogeneous group of subjects
23.7.1 Models assuming some parameters to be constant across subjects
23.7.2 Mixed models

259
259
262
263
265
265
268
270
271
272
273
275
275
282
285
287
287
287
289
291
291
295
297
297
298
300
300
301
301
302
302
303
304
304
305
23.7.3 Inclusion of covariates 306
23.8 Other modifications or extensions 306
23.8.1 Increasing the number of states 306
23.8.2 Changing the nature of the state-dependent distribution 306
23.9 Application to caterpillar feeding behaviour 307
23.9.1 Data description and preliminary analysis 307
23.9.2 Parameter estimates and model checking 307
23.9.3 Runlength distributions 311
23.9.4 Joint models for seven subjects 313
23.10 Discussion 314

24 Estimating the survival rates of Soay sheep from mark-recapture–recovery data 317
24.1 Introduction 317
24.2 MRR data without use of covariates 318
24.3 MRR data involving individual-specific time-varying continuous-valued covariates 321
24.4 Application to Soay sheep data 324
24.5 Conclusion 328

A Examples of R code 331
A.1 The functions 331
A.1.1 Transforming natural parameters to working 332
A.1.2 Transforming working parameters to natural 332
A.1.3 Computing minus the log-likelihood from the working parameters 332
A.1.4 Computing the MLEs, given starting values for the natural parameters 333
A.1.5 Generating a sample 333
A.1.6 Global decoding by the Viterbi algorithm 334
A.1.7 Computing log(forward probabilities) 334
A.1.8 Computing log(backward probabilities) 334
A.1.9 Conditional probabilities 335
A.1.10 Pseudo-residuals 336
A.1.11 State probabilities 336
A.1.12 State prediction 336
A.1.13 Local decoding 337
A.1.14 Forecast probabilities 337
A.2 Examples of code using the above functions 338
A.2.1 Fitting Poisson–HMMs to the earthquakes series 338
A.2.2 Forecast probabilities 339
CONTENTS

B Some proofs 341
 B.1 A factorization needed for the forward probabilities 341
 B.2 Two results needed for the backward probabilities 342
 B.3 Conditional independence of X^{1}_t and X^{T}_{t+1} 343

References 345

Author index 359

Subject index 365